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Section 4.3 GRATINGS AND MONOCHROMATORS

Malcolm R. Howells

A. DIFFRACTION PROPERTIES

A.1 Notation and sign convention

We adopt the notation of Fig. 4-6, inwhich a and b have opposite Sgns if they are on opposite Sdes
of the normal.

A.2 Grating equation
The grating eguation may be written
ml =dy(gna +dnb) . (1)

Theanglesa and b are both arbitrary, so it is possible to impose various conditions relaing them. If this
isdone, thenfor each | , therewill beauniquea and b. The following conditions are used.

(i) On-blaze condition:

a+B=20g , )
where g is the blaze angle (the angle of the sawtooth). The grating equation is then
mA = 2dgsn 6g cos(B +6g) . ©))
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Fig. 4-6. Grating equation notation.



(i) Fixedinand out directions:

a-p=2 , 4
where 2q is the (congtant) included angle. The grating equetion is then
mA =2dgpcosBsn(8 +3) . (5)

In this case, the wavelength scan endswhen a or b reaches 90°, which occurs at the horizon
wavdength | = 2d, cos?q.

(i) Constant incidence angle: Equation (1) givesb directly.

(iv) Constant focal distance (of a plane grating):
cos 3
—— = acongant : 6
. Cf (6)

leading to agrating equation
2
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Equations (3), (5), and (7) giveb (and thencea) for any | . Examples of the above a-b
relationships are (for references see http://mww-cxro.lbl.gov/):

() Kunz et d. plane-grating monochromator (PGM), Hunter et d. double PGM, collimated-light
SX700 PGM

(i) Toroida-grating monochromeators (TGMs), spherical-grating monochromators (SGMs, * Dragon”
system), Seya-Namioka, most aberration-reduced holographic SGMs, variable-angle SGM,
PGMs

(iii) Spectrographs, “ Grasshopper” monochromator
(iv) Standard SX700 PGM and mogt variants

B. FOCUSING PROPERTIES

The study of diffraction gratings (for references see http:/Aww-cxro.lbl.gov/) goes back more than a
century and has included plane, spherica [1], toroidd, and dlipsoida surfaces and groove patterns
made by classical (“Rowland”) ruling [2], holography [3,4], and variably spaced ruling [5,6]. In recent
years the optical design possibilities of holographic groove patterns and variably spaced rulings have
been extensively developed. Following norma practice, we provide an analysis of theimaging
properties of gratings by means of the path function F [7]. For this purpose we use the notation of Fig.
4-7, in which the zeroth groove (of width dg) passes through the grating pole O, while the nth groove
passes through the variable point P& ,w,|). The holographic groove pattern is taken to be made using
two coherent point sources C and D with cylindrical polar coordinates (r¢,0,2¢), (rp.d,zp) reldiveto
O. Thelower (upper) Sgnin Eqg. (9) refersto C and D both red or both virtua (one red and one
virtud), for which case the equiphase surfaces are confoca hyperboloids (ellipses) of revolution about



CD. Gratingswith varied line spacing d(w) are assumed to be ruled according to d(w) = dg(1 + vqw +
VoW2+ ..).

Faussian
Image plane

Fig. 4-7. Focusing properties notation.
We congder dl the gratings to be ruled on the generd surface
x= aj wil
1j

and the aj; coefficients are given below.

Ellipse coefficients a;;

coB 1l 1 axpA
apn=—— = +— =
2 4 O 0O A cos2 0

ax (2A2 +C)

83 = a0 %2 = 2c0s20

_8.20!4A2+C’ _ azoc

- 4 %04 = 500520

_ 8
%02 cos? 0

Theother a;j’swith i + j < 4 are zero. In the expressions above, 1, ', and g are the object distance,
image distance, and incidence angle to the normd, respectively, and
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Toroid coefficients a;
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Other a;'swith i + ] < 4 are zero. Here, Rand r are the mgor and minor redii of the bicycle-tire
toroid.
The aj’s for spheres; circular, parabolic, and hyperbolic cylinders; paraboloids; and hyperboloids
can aso be obtained from the va ues above by suitable choices of the input parametersr, r', andq.
Vauesfor the dlipse and toroid coefficients are given to sixth order at http:/Aww-cxro.lbl.gov/.

B.1 Calculation of the path function F
F isexpressed as

F= ZFIJKWIU ) (8)
K

where

mA
Fik = ZKCiji (0,1) + Z’KGj (B, 1) + o fijk

and the fj;c term, originating from the groove pattern, is given by one of the following expressions:

[ whenijk = 100, 0 otherwise Rowland

O
oy K -

=5 [ZCik(y. 10) £ Gk @.1)] holographic (©)
Eﬂjk varied line spacing

The coefficient Fyjy is related to the strength of theii,j aberration of the wavefront diffracted by the
grating. The coefficients Cyc and njj are given below, where the following notetion is used:

cos2a

T=T(r,a)= — 2ayy cosa (10a)

and
S:S(r,a):Fl—Zaoz cosa . (10b)

Coefficients Cjjc of the expansion of F
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Coefficients njj of the expansion of F
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Vauesfor Cj,c and njjc are given to sixth order a http://ww-cxro.lbl.gov/.

B.2 Determination of the Gaussian image point

By definition the principa ray AOBy arrives at the Gaussian image point B (g, Bg.2p) inFig. 4-7. Its
direction is given by Fermat’s principa, which implies [F/fw]y=0 =0 = 0 and [1F/l]y,=0=0 = O, from
which

m—}\:sina +49n By (119
do
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which are the grating equation and the law of magnification in the vertica direction. The tangentia focal
distance r( is obtained by setting the focusing term F 5 equd to zero and is given by

T(r,a)+ T(r5,Bo) =

U
EP Rowland
=
0= [T(c,y) £ T(rp,0)]  holographic (12)
0 "o
mA
LV A varied line spacing
H do

Equations (11) and (12) determine the Gaussian image point By and, in combination with the sagittal
focusing condition (Fgpg = 0), describe the focusing properties of grating systems under the paraxia
approximation. For a Rowland spherica grating the focusing condition, Eq. (12), is

2
Hecos?a  cosa O, Feos? B _CosBH_ 0
O r R OO R O

: (13)

which has important specid cases: (i) plane grating, R = oo,
implying
1§ =t cos?al/cos?b = —/ch

0 that the focdl distance and magnification are fixed if ¢ is held congtant; (i) object and image on the
Rowland circle, i.e,, r = Rcosa, rg = Rcos, M = |; and (iii) b = 90° (Wadsworth condition). The
foca distances of TGMs and SGMs, with or without moving dits, are dso determined using Eqg. (13).

B.3 Calculation of ray aberrations

In an aberrated system, the outgoing ray will arrive at the Gaussian image plane at a point By displaced
from the Gaussan image point By by theray aberrations Ay’ and AZ (Fig. 4-7). Thelatter are given
by

I EL (14
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where F isto be evauated for A = (r,a,2z) and B = (rgy,B g.2g) . By means of the expansion of F,
these equations alow the ray aberrationsto be calculated separately for each aberration type:

Ayijk =

Ridwi—Ui | Az = igRgewWijli-1 . 15
cos By Tjk ijk = lohjkW | (15)

Moreover, provided the aberrations are not too large, they are additive, so that they may either
reinforce or cancel.



C. DISPERSION PROPERTIES
Disperson properties can be summarized by the following relations.

(i) Angular dispersion:

Ea_g _ dcosB . (16)

m

(i) Reciprocal linear dispersion:
-3
H oA O _dcosp _ 10-3d[A]cosp Al

Doay)d, ~ mr' — mr'[m] (1)
(iii) Magnification:
M) = cosa r' (18)
cosp r
(iv) Phase-space acceptance (e):
€ =NAAg =NM g (asauming S, = MS)) (19)

where N isthe number of participating grooves.

D. RESOLUTION PROPERTIES

Thefollowing are the main contributions to the width of the insrumenta line spread function. An
estimate of the tota width is the vector sum.

(i) Entrancedlit (width S;):

_ Sdcosa
Mg = 20
ST (20)
(i) Exitdit(width S)):
_ Sydcosp
Mgy = 21
S2 mr’ (21)
(ii1) Aberrations (of perfectly made grating):
Ay = Ay'd cos|3 d CoF O 22)

mr' mOpwD

(iv) Sopeerror Af (of imperfectly made grating):



_ d(cosa +cos B) Ag
m
Note that, provided the grating is large enough, diffraction a the entrance dit aways guarantees a

coherent illumination of enough grooves to achieve the dit-width-limited resolution. In such casea
diffraction contribution to the width need not be added to the above.

ANge (23)

E. EFFICIENCY

The most accurate way to caculate grating efficienciesis by the full dectromagnetic theory [8].
However, approximate scaar-theory caculations are often useful and, in particular, provide away to
choose the groove depth h of alaminar grating. According to Bennett, the best value of the groove-
width-to-period ratio r isthe one for which the usefully illuminated area of the groove bottom is equd to
that of the top. The scaar-theory efficiency of alaminar graing with r = 0.5isgiven by Frankset d. as

_R [Arh cosal [ oL
B =, §+2(1—P)COSD—)\ 9+ - PR

gm;n 5 [1-2c0sQ* cos(Q~ +9) (24)

0 +cos?Q*] m = odd
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where

Q*= @(tana ttan )
do
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